Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

2,4-Bis[1-(4-hydroxyphenyl)-1-methylethyl]phenol: a three-dimensional framework built from $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

Ewa Rozycka-Sokolowska

Institute of Chemistry and Environmental Protection, Jan Dlugosz University, Armii
Krajowej 13/15, 42-200 Czestochowa, Poland
Correspondence e-mail: crystal@cz.onet.pl
Received 1 February 2008
Accepted 4 March 2008
Online 29 March 2008
In the crystal structure of the title compound, $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3}$, (I), there are three different $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, which individually form chains of $C(10), C(12)$ and $C(16)$ types. The combined effect of all these hydrogen bonds is the formation of a three-dimensional network, which is additionally stabilized by a single intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction. The significance of this study lies in the comparison drawn between the molecular structure of (I) and those of several of its analogues, which shows a close similarity in the almost perpendicular orientation of the benzene rings.

Comment

The present investigation is a continuation of our work on the structural study of compounds formed as by-products during the industrial production of $4,4^{\prime}$-isopropylidenediphenol (commonly referred to as bisphenol-A or p, p-BPA), (II). In previous papers, the structures of two such by-products, i.e. 2,4'-isopropylidenediphenol [o, p-BPA; Cambridge Structural Database (CSD; Allen, 2002) refcode GALCAY (RozyckaSokolowska et al., 2005)], (III), and 2,2'-isopropylidenediphenol [o,o-BPA; CSD refcode UCOFIC (Rozycka-Sokolowska et al. 2006)], (IV), were reported. Now, the structure of a third by-product, i.e. 2,4-bis[1-(4-hydroxyphenyl)-1-methylethyl]phenol (commonly referred to as BPX-1), (I), is reported. We note that the 2,4-bis(α, α-dimethylbenzyl)phenol skeleton also occurs in WOBROU (Bryan, 2000), (V), and VACKUF (Kurashev et al., 1986), (VI), while (I) may be treated as a (4-hydroxyphenyl)isopropyl derivative of (II) (CEGYOC02; Okada, 1996) or of (III), sharing structural features with these two isomers of BPA.

Compound (I) is constructed around a benzene ring (C10C15) which has (4-hydroxyphenyl)isopropyl substituents at positions 2 and 4 and a hydroxy substituent at position 1 (Fig. 1). This ring and the two benzene rings belonging to the former substituents, i.e. the $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 19-\mathrm{C} 24$ rings, are
planar, with largest deviations from planarity of -0.008 (2), 0.013 (2) and 0.011 (2) \AA for atoms C4, C11 and C22, respectively. Similar to the case of the three isomers of isopropylidenediphenol, each hydroxy O atom attached to the benzene ring is nearly coplanar with it. Namely, atom O22 lies only 0.017 (2) \AA above the plane of the C19-C24 ring, while atoms O1 and O11 lie 0.037 (2) and 0.001 (2) \AA below the planes formed by atoms $\mathrm{C} 1-\mathrm{C} 6$ and $\mathrm{C} 10-\mathrm{C} 15$, respectively. The dihedral angles between the least-squares plane defined by the C atoms of the central benzene ring ($\mathrm{C} 10-\mathrm{C} 15$) and the C1-C6 and C19-C24 planes are $87.2(1)$ and $82.4(1)^{\circ}$, respectively, while the latter two planes are inclined at an angle of $82.8(1)^{\circ}$ to one another. As can be seen in Fig. 1, there is one weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond, which links methyl atom C 8 via $\mathrm{H} 8 A$ with hydroxy atom O 11 and generates an $S(6)$ graph-set motif (Bernstein et al., 1995). The noncoplanar practically perpendicular orientation of the benzene rings belonging to the molecule of (I) and the presence of an intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond with such a graph-set descriptor are in agreement with the structures observed for compounds (III)-(VI).

(II)

(IV)

(V)

The crystal structure of (I) contains three strong nearly linear $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) which connect each molecule to six others. These interactions result in the formation of a continuous three-dimensional framework, which can be analyzed in terms of three independent onedimensional substructures, each generated by one of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

In the first substructure, atom O 1 in the molecule at (x, y, z) acts as a hydrogen-bond donor via H 1 to atom O 11 belonging to the molecule at $\left(x+\frac{1}{2}, y-\frac{1}{2}, z\right)$, so forming a $C(10)$ chain
running parallel to the [$\overline{1} 10$] direction (Fig. 2). Two chains of this type pass through each unit cell, parallel to [$\overline{1} 10]$ and [110], where the component molecules are related by the c-glide plane at $y=\frac{1}{2}$. In the second substructure, hydroxy atom O 11 acts as a hydrogen-bond donor via H 11 to atom O 22 belonging to the molecule at $\left(x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}\right)$, so forming a zigzag $C(12)$ chain (Fig. 3) which runs parallel to the [101] direction and is built from molecules related by the c-glide plane at $y=\frac{1}{4}$. The third substructure is generated by an $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond that links hydroxy atom O 22 at (x, y, z) via H 22 with hydroxy atom O 1 belonging to the molecule at

Figure 1
A view of the molecule of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. The dashed line depicts the intramolecular hydrogen bond forming a pattern with the $S(6)$ descriptor. H atoms are drawn as spheres of arbitrary radii.

Figure 2
Part of the crystal structure of (I), showing the formation of two antiparallel hydrogen-bonded $C(10)$ chains along the [$\overline{1} 10$] and [110] directions. The C atoms of methyl groups and all H atoms not involved in the hydrogen-bond motifs have been omitted for clarity. [Symmetry codes: (i) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (v) $x-\frac{1}{2}, y+\frac{1}{2}, z$; (vi) $x-1,-y, z+\frac{1}{2}$; (vii) $x-\frac{1}{2}$, $-y+\frac{1}{2}, z+\frac{1}{2}$; (viii) $x, 1-y, z+\frac{1}{2}$.]
($x,-y, z-\frac{1}{2}$), so generating a zigzag $C(16)$ chain (Fig. 4). This chain runs along the [001] direction and comprises molecules related by the c-glide plane at $y=0$. Two parallel $C(12)$ and two parallel $C(16)$ chains pass through each unit cell.

The combined effect of the $C(10), C(12)$ and $C(16)$ chains parallel to the [110] and [$\overline{1} 10$], [101], and [001] directions, respectively, is sufficient to generate the continuous threedimensional network. This network is additionally stabilized by a weak $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction, which connects aromatic atom C 12 at (x, y, z) via atom H 12 with the centroid of the C1-C6 benzene ring (Cg1) of the molecule at $\left(x+\frac{1}{2}, y+\frac{1}{2}, z\right)$ (Fig. 5 and Table 1).

Figure 3
Part of the crystal structure of (I), showing the formation of two parallel hydrogen-bonded $C(12)$ chains along the [101] direction. The C atoms of methyl groups and all H atoms not involved in the hydrogen-bond motifs have been omitted for clarity. [Symmetry codes: (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iv) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (ix) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (x) $x,-y+1, z-\frac{1}{2}$; (xi) $x+1,-y+1$, $z+\frac{1}{2}$.]

Figure 4
Part of the crystal structure of (I), showing the formation of two parallel hydrogen-bonded $C(16)$ chains along the [001] direction. The C atoms of methyl groups and all H atoms not involved in the hydrogen-bond motifs have been omitted for clarity. [Symmetry codes: (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x,-y, z-\frac{1}{2}$; (iv) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (xii) $x,-y, z+\frac{1}{2}$; (xiii) $x+\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$.]

Figure 5
Part of the crystal structure of (I), showing the intermolecular $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction. The C atoms of methyl groups and all H atoms not involved in this interaction have been omitted for clarity. [Symmetry codes: (iv) $x+\frac{1}{2}, y+\frac{1}{2}, z ;($ xiv $) x-\frac{1}{2}, y-\frac{1}{2}, z$.]

Experimental

The sample of (I) was obtained from the Institute of Heavy Organic Synthesis (Kedzierzyn-Kozle, Poland). A crystal suitable for X-ray diffraction measurement was grown by slow evaporation of an ethanol solution at a constant temperature of 279 K .

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{O}_{3}$
$M_{r}=362.45$
Monoclinic, $C c$
$a=6.2143(2) \AA$
$b=15.3978(5) \AA$
$c=20.7130(7) \AA$
$\beta=93.729(3)^{\circ}$

$$
V=1977.76(11) \AA^{3}
$$

$M_{r}=362.45$
Monoclinic, $C c$.
$b=15.3978$ (5) \AA
$\beta=93.729(3)^{\circ}$

Data collection

Oxford Diffraction Xcalibur-3 CCD diffractometer
7160 measured reflections

$$
Z=4
$$

Mo $K \alpha$ radiation
$\mu=0.08 \mathrm{~mm}^{-1}$
$T=290(2) \mathrm{K}$
$0.30 \times 0.27 \times 0.07 \mathrm{~mm}$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.082$
$w R\left(F^{2}\right)=0.082$
$S=1.08$
2469 reflections
305 parameters
2 restraints

> 2469 independent reflections 1729 reflections with $I>2 \sigma(I)$ $R_{\mathrm{int}}=0.027$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.12 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.11 \mathrm{e}^{-3}$

All aromatic H atoms were positioned geometrically and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and with $U_{\text {iso }}(\mathrm{H})$ values of $1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms of hydroxy and methyl groups were located in difference maps and refined isotro-

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 1-\mathrm{C} 6$ ring.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 11^{\text {i }}$	0.92 (3)	1.91 (3)	2.813 (3)	166 (3)
$\mathrm{O} 11-\mathrm{H} 11 \cdots \mathrm{O} 22^{\text {ii }}$	0.87 (4)	1.95 (4)	2.813 (3)	177 (4)
$\mathrm{O} 22-\mathrm{H} 22 \cdots \mathrm{O} 1^{\text {iii }}$	0.89 (4)	1.88 (4)	2.756 (3)	167 (3)
$\mathrm{C} 8-\mathrm{H} 84 \cdots \mathrm{O} 11$	1.03 (3)	2.31 (3)	2.987 (4)	122 (2)
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{Cg} 1^{\text {iv }}$	0.93	2.74	3.564 (3)	148

Symmetry codes: (i) $x+\frac{1}{2}, y-\frac{1}{2}, z$; (ii) $x+\frac{1}{2},-y+\frac{1}{2}, z+\frac{1}{2}$; (iii) $x,-y, z-\frac{1}{2}$; (iv) $x+\frac{1}{2}, y+\frac{1}{2}, z$.
pically, giving $\mathrm{O}-\mathrm{H}$ distances in the range 0.87 (4)-0.92 (3) \AA and $\mathrm{C}-\mathrm{H}$ distances in the range $0.94(4)-1.03(4) \AA$. In the absence of significant resonant scattering, the Flack (1983) parameter was indeterminate (Flack \& Bernardinelli, 2000) and the Friedel equivalent reflections were merged prior to the final refinement.

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2008).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3195). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1575.
Brandenburg, K. (2006). DIAMOND. Version 3.1d. Crystal Impact GbR, Bonn, Germany.
Bryan, J. C. (2000). Acta Cryst. C56, 1046-1047.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Flack, H. D. \& Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143-1148.
Kurashev, M. V., Struchkov, Yu. T., Veretyakhina, T. G. \& Skhlover, V. E. (1986). Russ. Chem. Bull. 35, 1673-1676.

Okada, K. (1996). J. Mol. Struct. 380, 223-233.
Oxford Diffraction (2004). CrysAlis CCD. Version 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Oxford Diffraction (2005). CrysAlis RED. Version 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Rozycka-Sokolowska, E., Marciniak, B. \& Pavlyuk, V. (2006). Acta Cryst. C62, o162-o164.
Rozycka-Sokolowska, E., Marciniak, B., Pavlyuk, V. \& Dziwinski, E. (2005). Acta Cryst. C61, 045-o46.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Westrip, S. P. (2008). publCIF. In preparation.

